Anatomy of energetic changes accompanying urea-induced protein denaturation.

نویسندگان

  • Matthew Auton
  • Luis Marcelo F Holthauzen
  • D Wayne Bolen
چکیده

Because of its protein-denaturing ability, urea has played a pivotal role in the experimental and conceptual understanding of protein folding and unfolding. The measure of urea's ability to force a protein to unfold is given by the m value, an experimental quantity giving the free energy change for unfolding per molar urea. With the aid of Tanford's transfer model [Tanford C (1964) J Am Chem Soc 86:2050-2059], we use newly obtained group transfer free energies (GTFEs) of protein side-chain and backbone units from water to 1 M urea to account for the m value of urea, and the method reveals the anatomy of protein denaturation in terms of residue-level free energy contributions of groups newly exposed on denaturation. The GTFEs were obtained by accounting for solubility and activity coefficient ratios accompanying the transfer of glycine from water to 1 M urea. Contrary to the opinions of some researchers, the GTFEs show that urea does not denature proteins through favorable interactions with nonpolar side chains; what drives urea-induced protein unfolding is the large favorable interaction of urea with the peptide backbone. Although the m value is said to be proportional to surface area newly exposed on denaturation, only approximately 25% of the area favorably contributes to unfolding (because of newly exposed backbone units), with approximately 75% modestly opposing urea-induced denaturation (originating from side-chain exposure). Use of the transfer model and newly determined GTFEs achieves the long-sought goal of predicting urea-dependent cooperative protein unfolding energetics at the level of individual amino acid residues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

Thermodynamics of denaturant-induced unfolding of a protein that exhibits variable two-state denaturation.

Free energy changes (DeltaG(degrees)(N-->D)) obtained by denaturant-induced unfolding using the linear extrapolation method (LEM) are presumed to reflect the stability differences between native (N) and denatured (D) species in the absence of denaturant. It has been shown that with urea and guanidine hydrochloride (GdnHCl) some proteins exhibit denaturant-independent (DeltaG(degrees)(N-->D)). B...

متن کامل

Unfolding of dimeric creatine kinase in urea and guanidine hydrochloride as measured using small angle X-ray scattering with synchrotron radiation.

The denaturation of dimeric creatine kinase (CK) induced by urea and guanidine hydrochloride (GuHCl) has been studied by small angle X-ray scattering (SAXS), which is a direct way to measure the changes in the overall dimensions of a protein molecule. The radii of gyration (Rg) of CK are 29+/-0.4 angstroms in the native state and 46+/-1.5 angstroms in the unfolded state in either 8 M urea or 3 ...

متن کامل

Denaturation Changes in Egg Albumin with Urea, Radiation, and Heat

The extent of urea denaturation depends on the concentration of protein and urea and also on the temperature of the solution. Egg albumin solutions (0.9 per cent) are not denatured by 20 per cent urea, denature slowly with 25 per cent urea, and denature rapidly with 35 per cent urea at room temperature. At a higher temperature 30 per cent urea is rapidly effective. Denaturation of the egg album...

متن کامل

Denaturation Changes in Egg Albumin with Urea, Radiation, and Heat by Janet H, Clark

The change produced in native proteins by various agents which results in loss of their characteristic properties and changes in solubility is called denaturation. The term, however, may be applied to structural and physical changes in the protein molecule which differ widely with the particular agent used. Urea denaturation differs in many respects from both heat and radiation denaturation. Ur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 39  شماره 

صفحات  -

تاریخ انتشار 2007